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The convective flows which arise in shallow cavities filled with low-Prandtl-number
fluids when subjected to a horizontal temperature gradient are studied numerically
with a finite element method. Attention is focused on a rigid cavity with dimensions 4×
2×1, for which experimental data are available. The three-dimensional results indicate
that, after a relative concentration of the initial Hadley circulation, a transition to
time-dependent flows occurs in the form of a roll oscillation with a purely dynamical
origin. This transition corresponds to a Hopf bifurcation with a breaking of symmetry
that gives some specific properties to the time evolution of the flow: these properties
are shown to be the result of the general behaviour of the dynamical systems.
Calculations performed in the case of mercury compare well with the experiments
with similar power spectra of the temperature, and this validates the analysis of
the nature of the global flow performed in the limiting case Pr = 0. All these
results are discussed with respect to the linear and nonlinear analyses and to other
computational experiments. Numerical results obtained in the corresponding two-
dimensional situation give a different transition to the time-dependent flow: it is
shown that in the three-dimensional cavity this type of two-dimensional transition is
less probable than the observed transition with breaking of symmetry.

1. Introduction
During the growth of metal and semi-conductor crystals (like Ga-As) from a

liquid melt in horizontal boat (e.g. by the Bridgman technique), undesirable striations
corresponding to an irregular distribution of solute in the crystal may occur. It has
been shown that such striations are caused by spontaneous temperature oscillations
generating fluctuations in the rate of growth of the crystal (see the survey paper of
Pimputkar & Ostrach 1981).

Experiments without solidification carried out for pure molten Ga in cavities
with a horizontal temperature gradient (Hurle, Jakeman & Johnson 1974) exhibit
such oscillations. Thus, in a cavity with differentially heated vertical endwalls (at
temperatures T1 and T2), a buoyancy flow occurs as soon as T1 is different from T2.
For small temperature difference ∆T = T2 − T1, this flow corresponds to a simple
unicellular flow, where motion is up the hot wall, across the top, down the cold wall
and returning across the bottom, and is known as a Hadley circulation. But when
∆T is increased beyond a critical value ∆Tc (corresponding to a critical Grashof
number Grc), fluids with a low Prandtl number Pr present the onset of oscillations
experimentally registered on the temperature.
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An attempt to explain these oscillations has been done by linear stability analysis
applied on the basic unicellular Hadley circulation. After the work of Hart (1972)
showing the possible occurrence of a longitudinal oscillatory instability of this basic
state, Gill (1974) suggested that this instability is the cause of the experimentally
observed oscillations and gave a physical description of the nature of these oscillations.
More recently, Hart (1983a), Laure (1987) and Laure & Roux (1987) extended this
work by considering different boundary conditions. Then Laure (1987), Laure &
Roux (1987), Kuo & Korpela (1988) and Wang & Korpela (1989) obtained new
information by using a nonlinear analysis. These results, although very interesting,
are perhaps not relevant for the problem under consideration: as shown numerically
by Cormack, Leal & Imberger (1974) and more recently by Hart (1983b), Dupont
et al. (1987) and at the GAMM workshop (Roux 1990), the Hadley circulation is
not the appropriate basic flow for the domain of values of Gr at which oscillations
occur. An alternative approach, in which the perturbation is imposed on the basic
steady flow (continuation method), has been used by Winters (1988) for the 4 × 1
box, and by Skeldon, Riley & Cliffe (1996) who extended the work by varying the
aspect ratio and the inclination of the box. However, this approach has up to now
mainly applied to two-dimensional situations. Analysis of the secondary instabilities
(those affecting the transverse rolls) has been performed by Wang & Korpela (1992),
but their results do not explain the characteristics of the experimentally observed
oscillatory instabilities.

The numerical simulation of oscillatory regimes in low-Pr fluids has given valuable
information. After the works of Crochet, Geyling & Van Schaftingen (1983, 1987),
Roux, Bontoux & Henry (1985), Ben Hadid & Roux (1987), showing the existence
of oscillatory regimes in two-dimensional rectangular cavities, the two-dimensional
simulations of the GAMM workshop (Roux 1990) in a 4 × 1 box agreed on the
threshold value of Gr for the onset of oscillations and on the frequency of these
oscillations (close to the values obtained by Winters 1988), and compared roughly
with the results of Hurle et al. (1974), Hung & Andereck (1988, 1990), Hart & Pratte
(1990) and Pratte & Hart (1990). But it is not known whether the processes found
for two-dimensional simulations are relevant to explain the oscillations obtained in
real three-dimensional cavities.

Three-dimensional computations were necessary for a better understanding of these
phenomena. Some have been carried out by Dupont et al. (1987) in the case of open
cavities, by Roux et al. (1985) in the case of a cylinder, and by different contributors
to the GAMM workshop (Roux 1990), but they were all limited to stationary results.
The experimental results obtained by Hung & Andereck (1990), Hart & Pratte (1990)
and Pratte & Hart (1990) in the case of 4 × 2 × 1 and 4 × 1 × 1 rigid cavities with
adiabatic lateral walls, motivated dealing with such situations. Another experimental
investigation by McKell et al. (1990) concentrated rather on the chaotic behaviour,
whereas a recent work by Braunsfurth & Mullin (1996) investigated the variation of
the onset of oscillation as a function of the Prandtl number. Afrid & Zebib (1990)
solved the three-dimensional problem, but they assumed a symmetry with respect to
the longitudinal vertical plane even in the oscillatory case, which is in opposition with
the experimental results (Pratte & Hart 1990). More recently, Mundrane & Zebib
(1993, 1994) analysed combined buoyancy- and thermocapillary-driven convection,
respectively in the steady regime for three-dimensional configurations and in the
oscillatory regime for two-dimensional configurations.

We chose to consider the case of a rigid cavity with adiabatic lateral walls and
4 × 2 × 1 dimensions which, up to now, has not really been resolved. The values of
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Figure 1. Differentially heated cavity: definition sketch for dimensions, coordinates, main planes and
locations of points P1–P5 (labelled 1–5) where time variations are recorded: P1 = (3.697, 0.678, 0.5),
P2 = (2, 1, 0.795), P3 = (0.942, 1, 0.795), P4 = (0.942, 0.4098, 0.795), P5 = (0.942, 0.4098, 0.5).

Gr are taken up to 45 000, whereas the values of Pr correspond mainly to mercury
(Pr = 0.026), together with the limiting case Pr = 0. The three-dimensional results are
analysed and compared with the different experimental results available: they show
good agreement based on different characteristics of the flow and of the oscillatory
behaviour. A synthesis of the results obtained in the corresponding two-dimensional
cavity (4 × 1) is also given in order to allow comparisons between the oscillatory
regimes in two-dimensional and three-dimensional situations.

2. Posing the problem and equations
We consider a parallelepipedic rigid cavity having two differentially heated endwalls

at temperatures T1 and T2 (T2 > T1), and filled up with a low-Prandtl-number fluid
(see figure 1). The dimensions of the cavity are the length L, the width W and the
height H on the axes ox, oy and oz respectively. We can then define two aspect ratios:
Ax = L/H and Ay = W/H (Ax × Ay × 1 cavity). The two-dimensional situation
concerns the middle longitudinal vertical plane (Vl plane parallel to (ox, oz)) and
is characterized by the length L and the height H or the aspect ratio Ax (Ax × 1
cavity).

We assume that the velocity is small enough to consider the flow as laminar. In
addition, the fluid is supposed to be Newtonian and quasi-incompressible (Boussinesq
approximation): the physical properties (kinematic viscosity ν, diffusivity κ and density
ρ̄) are assumed to be constant, except in the buoyancy term where ρ̄ is taken as a
linear function of the temperature T̄ :

ρ̄ = ρ1(1− α(T̄ − T1)) (2.1)

where α is the thermal expansion coefficient (an overbar indicates a dimensional
variable).

The motion of the fluid is then governed by the incompressible Navier–Stokes
equations coupled with the energy equation. With reference length, time, velocity,
pressure and temperature given respectively by H , H2/ν, Gr0.5 ν/H , Gr0.5 ρ ν2/H2 and
T̄ ref = ∆T̄ /Ax, we obtain the following set of dimensionless equations expressed in
terms of the velocity vector u(u, v, w), the pressure p and the temperature T :

∇ · u = 0, (2.2)



148 D. Henry and M. Buffat

∂u

∂t
+ Gr0.5(u · ∇)u = −∇p+ Gr0.5T ez + ∇2u, (2.3)

∂T

∂t
+ Gr0.5u · ∇T =

1

Pr
∇2T . (2.4)

The non-dimensional parameters are the Grashof number Gr = αg∆T̄H3/Axν
2 and

the Prandtl number Pr = ν/κ. The dimensionless temperature is chosen as T =
(T̄ − T1)/T̄ ref . The use of Gr0.5 ν/H for the dimensionless velocity is recommended
by Ostrach (1976) for large values of Gr (where inertia balances buoyancy). The
associated boundary conditions are:
u = 0, v = 0, w = 0 on all the boundaries (rigid walls);
T = 0 at x = 0 (cold vertical wall);
T = Ax at x = Ax (hot vertical wall);
∂T/∂n = 0 (adiabatic condition) on the horizontal and vertical longitudinal walls.
In the limiting case Pr = 0 (highly conducting fluid with a finite ν and an infinite

κ), (2.4) becomes ∇2T = 0. Taking into account the boundary conditions, the solution
corresponds to the diffusive temperature profile T = T0(x) = x. The system (2.2)–(2.4)
is then reduced to

∇ · u = 0, (2.5)

∂u

∂t
+ Gr0.5(u · ∇)u = −∇p+ Gr0.5xez + ∇2u. (2.6)

To summarize, the configurations under study correspond to a rigid cavity with
adiabatic lateral walls and 4 × 2 × 1 dimensions. Some two-dimensional simulations
are performed in the corresponding two-dimensional geometry (4 × 1). The main
simulations correspond to the limiting case Pr = 0, but also to Pr = 0.026 in order
to study the effect of Pr and to compare with the experimental results.

3. Numerical method and characteristics of the calculations
The general system (2.2)–(2.4) is solved with a computer code developed by Buffat

(1991a) for the simulation of two- and three-dimensional subsonic flows. The original
time integration is based on a first-order semi-implicit scheme which allows for the
linearization of the equations and the formal decoupling between the energy equation
and the Navier–Stokes equations. However this scheme is too diffusive in time and we
have replaced it by an implicit second-order scheme to solve precisely and efficiently
(i.e. without too small time steps) non-stationary flows (Buffat 1991b).

The space discretization is based on a finite element method which can deal
with complex geometries; this could be useful for the simulation of real crystal
growth configurations. The finite element used is the P 1/isoP 2 element which gives
a continuous and piecewise linear interpolation for the pressure associated with a
continuous and piecewise linear interpolation for the velocity components and the
temperature on a grid twice as fine as the pressure grid.

The two-dimensional simulations have been performed on a regular mesh which
is symmetrical with respect to the centre of the cavity and has 97 × 41 nodes. The
three-dimensional results have been obtained with a slightly graded mesh which is
symmetrical with respect to the main centre planes and has 57 × 17 × 17 nodes. To
test the grid dependence of the numerical results, we have done again some stationary
calculations on a refined mesh with 73 × 25 × 25 grid points. In the stationary case
at Pr = 0 and Gr = 30 000, the maximal difference on the nodal values of the
velocity components is less than 5%, showing that the mesh used in this study is a
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little too coarse in some parts of the cavity but retains the main characteristics of
the flow. The calculations have been realized with the second-order scheme with a
time step ∆t between 10−3 and 5 × 10−4, which allows a precise representation of
the oscillatory solutions with about a hundred of time steps per period. A general
transient evolution requires a few dozen periods or a dimensionless time of about 1.
To allow an estimation of the times involved in a typical experimental situation, the
dimensional reference time, H2/ν, corresponds to values around 558 s and 872 s for
respectively the experiments of Hung & Andereck (1990) and Hart & Pratte (1990).

The results in the three-dimensional case are generally presented by views in the
principal middle planes (figure 1): the longitudinal vertical plane (Vl plane, plane of
symmetry for low Gr), the longitudinal horizontal plane (Hl plane) and the transversal
vertical plane (Vt plane). Some three-dimensional views of particles tracks are shown.
Time variations recorded for the velocity components and for the temperature at
different points P1–P5 inside the cavity (see figure 1) are also given.

4. Two-dimensional results
The problem of the two-dimensional rigid cavity with dimensions 4 × 1 has been

treated in detail by many authors during the GAMM workshop (Roux 1990) (see
also Pulicani et al. 1990; Bontoux et al. 1990). Our objective in this section is to make
a synthesis of the results available with stress on some particular properties in order
to compare with the three-dimensional results.

At small Grashof numbers, a parallel flow circulation with recirculation at the
ends (Hadley circulation) is obtained. When increasing the Grashof number, as
mentioned by Hart (1983b) and confirmed by Drummond & Korpela (1987), this
Hadley circulation is first modified by inertial effects near the ends of the cavity
leading to the creation of small cat’s eye vortices in these parts of the cavity. These
two end vortices grow regularly and lead to the successive build-up of eddies from
the ends to the centre, and thus as shown by Hart (1983b) to a smooth transition
(imperfect bifurcation) to the steady multi-vortices pattern predicted by the linear
stability analysis (Hart 1983a; Laure 1987). For the aspect ratio Ax = 4, the two
small cat’s eye vortices, visible for Gr = 5000, quickly merge, giving a single centre
vortex that becomes stronger and begins to tilt as Gr is increased. This centre vortex
becomes concentrated, leading to a more and more well defined convective cell as
it gets stronger vertical velocities (figure 2), and this enables the formation of small
recirculation patterns near the ends (Roux 1990). Such small eddies are obtained by
Drummond & Korpela (1987) in larger cavities in the region between the cells and are
interpreted as a secondary instability. It seems that, as the Grashof number increases,
the concentration of the original cells leaves enough space between the rolls to enable
the creation by shear of small vortices. All these stationary results are symmetric with
respect to the centre of the cavity.

The further behaviour of the flow for increasing Gr has been obtained during
the GAMM workshop (Roux 1990), and completed by Pulicani et al. (1990) and
Bontoux et al. (1990). Above a critical value of the Grashof number, Grc, given
by Le Quéré (1990) as Grc = 25 350 for Pr = 0, an oscillatory regime is obtained.
By increasing the Grashof number, there is a succession of various regimes: mono-
periodic, quasi-periodic, with even period doubling behaviour (Pulicani et al. 1990).
In all these oscillatory cases, the flow corresponds to oscillations of the three steady
rolls obtained at smaller Grashof number. A further increase in Gr leads, for a
value close to Gr = 35 000, to a reverse transition to stationary convection with
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Figure 2. Vertical velocity (w) profiles as a function of x for z = 0.5. Two-dimensional steady
cases in the 4× 1 cavity for Pr = 0 and different values of Gr.

two almost independent rolls filling the whole height of the cavity (‘flywheel’ or
inertial convection roll mentioned for long cavities by Drummond & Korpela (1987)
and Roux, Ben Hadid & Laure (1989), and precisely studied for Rayleigh–Bénard
convection by Clever & Busse (1981) and Busse & Clever (1981)). In fact, this two-roll
structure belongs to another solution branch which arises through a saddle-node point
at a threshold very close to Grc (Winters 1988; Bontoux et al. 1990). This indicates
that this stationary two-cell regime coexists with the oscillatory three-cell regimes, and
suggests that the oscillations correspond to a competition between the rolls due to
geometric constraints: the length of the cavity is too short for three equally developed
rolls to settle in such a cavity.

5. Three-dimensional results
The simulation of the three-dimensional flow in a parallelepipedic rigid box has

been performed for dimensions corresponding to Ax = 4 and Ay = 2 (4× 2× 1 box).
The general study will concern the limiting case Pr = 0, before analysing the effect
of Pr.

5.1. Stationary convection (Pr = 0)

An evolution from rest gives for Gr = 10 000 a stationary one-cell convective state.
Such a stationary state is still obtained for larger Grashof numbers, as a stable
state for Gr = 20 000, and as an unstable state for still larger Gr values (30 000,
40 000, 45 000). In all these cases, we observe the two symmetries mentioned by Laure
(1987) for a rigid cavity: a symmetry with respect to the Vl plane (called S symmetry
and corresponding to a reflection about the Vl plane), and a symmetry with respect
to the middle horizontal transversal axis Ht (x = 2, z = 0.5) (called Sr symmetry
and corresponding to a reflection about the Ht axis). The combination of these two
symmetries gives a symmetry with respect to the centre point of the cavity (noted Sc
symmetry).
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Figure 3. Steady flow solution in the 4× 2× 1 cavity for Pr = 0. Velocity vector fields in the Vl
plane: (a) Gr = 10 000; (b) Gr = 20 000.
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Figure 4. Steady flow solution in the 4× 2× 1 cavity for Pr = 0. Vertical velocity (w) profiles in
the Vl plane at z = 0.5 for different values of Gr.

As shown in figure 3(a), the flow at Gr = 10 000 corresponds to a single roll, already
tilted compared to the Hadley circulation. This roll seems to concentrate in the core
of the cavity at higher Grashof numbers (figure 3b). This effect is confirmed by the
vertical velocity profiles given in figure 4 which show a well defined central roll, clearly
distinct from the peripheral long-scale circulation. These profiles compare well with
the ones obtained in figure 2 for the two-dimensional simulations (see for instance
the curves corresponding to Gr = 6000, 9000, 10 000 and 12 500). This suggests that
an imperfect bifurcation, similar to the multi-vortices imperfect bifurcation obtained
in the two-dimensional simulations, begins to develop in the three-dimensional cavity,
but it occurs at a larger Grashof number, and even up to Gr = 45 000 the small
eddies near the ends are not obtained. The appearance of this steady bifurcation
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Figure 5. Steady flow solution in the 4 × 2 × 1 cavity for Pr = 0 and Gr = 20 000: (a) particle
tracks issued from the points (0.1, 0.1, 0.5) and (0.1, 1.9, 0.5); (b) particle tracks issued from the points
(3, 0.5, 0.4) and (1, 1.5, 0.75); (c) central vorticity tube passing through the centre of the cavity and
particle track issued from the point (2, 0.1, 0.35).

before any oscillatory behaviour is in agreement with the stability analysis of the
Hadley circulation (Hart 1972; Laure 1987; Kuo & Korpela 1988) which predicts
the first transition for Pr = 0 as a stationary mode with tranverse rolls. Moreover,
according to the two more accurate studies (Laure 1987; Kuo & Korpela 1988) this
stationary transition will occur first up to Pr = 0.033, which includes the case of the
experiments on mercury with Pr = 0.026.

Important three-dimensional effects are present in these steady situations. They
transform the principal unicellular circulation in planes parallel to the Vl plane to a
spiralling motion in the half-cavities between the lateral walls and the Vl plane (the
S symmetry prevents the flow going through the Vl plane). According to the particle
tracks given in figure 5(a–c), the particles spiral from the lateral wall towards the Vl
plane with an increasing radius, return quite quickly to the lateral wall by a large spiral
along the walls and then flow inwardly quickly near the lateral walls. This spiralling
motion occurs mainly in the region of the cavity composed of a conical domain near
the Ht axis and the domain along the Vl plane and the wall boundaries. For particles
taken outside this region in the intermediate torus (figure 5b), the spiralling motion is
less pronounced. All this is strongly connected with the four vortices observed in the
horizontal Hl plane. These results look like those obtained by Mallinson & de Vahl
Davis (1977) in similar cavities heated from the side but with different aspect ratios,
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Figure 6. Transition from the steady to the oscillatory flow in the 4× 2× 1 cavity for Pr = 0: (a)
evolution with time of the L2 norm of the velocity components for Gr = 45 000: destabilization
of the unstable steady state; (b) corresponding power spectrum of the L2 norm of v; (c) evolution
with time of the L2 norm of v for different Gr, with a same initial perturbed state corresponding to
the convective state for Gr = 45 000 at t = 0.7 (see a); (d) corresponding power spectrum of the L2

norm of v for Gr = 25 000.

where the spiralling motion was explained as the result of the interaction between the
rotating flow and the wall.

5.2. Oscillatory convection

A transition to oscillatory convection is observed for large values of Gr. For Gr =
45 000, growing perturbations have naturally destabilized the unstable steady flow
(figure 6a) whereas for lower Gr (Gr = 40 000, 30 000 and 25 000), an initially
perturbed state has been used to trigger this transition (figure 6c). For Gr = 20 000, the
initial perturbations are damped, and the instability threshold between the stationary
convection and the oscillatory convection for Pr = 0 can be evaluated around
Gr = 22 400.

5.2.1. Time characteristics

The time signals corresponding to the oscillatory convection are perfectly periodic,
with a main period T2 (measured from the L2 norm of the velocity components)
decreasing from T2 = 0.173 for Gr = 25 000 to T2 = 0.121 for Gr = 45 000. These



154 D. Henry and M. Buffat

(a)
(b)0.25

0

–0.25
–0.2 –0.1 0 0.1

v1

v2

0.50

0.25

0

–0.25

–0.50

–0.75
0 0.4 0.8 1.2 1.6 2.0

t

Ec
u3u4v1v2w3w5

v1

u3

w3

w3

(c) (d )0

–1

–2

–3

–4

–5
0 10 20 30

f2
Gr = 45000f1

lo
g 

(A
)

A4
A3

f

0.2

0

–0.2

–0.4

–0.6

–0.8
0 0.1 0.2 0.3 0.4

Gr = 25000

v1

{

{

Gr = 45000
Gr = 25000

t

( f )0

–0.05

–0.10

–0.15

–0.20

–0.25
–0.7 –0.6 –0.5 –0.4 –0.3

u3

w3

Gr = 45000
Gr = 25000

v1

(e)

–0.4 –0.3 –0.2 –0.1 0.1 0.20
–0.50

–0.25

0

0.25

0.50

v2

u3

Figure 7. Time characteristics of the oscillatory convection in the 4 × 2 × 1 cavity for Pr = 0: (a)
phase trajectory v2 = f(v1) showing the initiation of the periodic flow at Gr = 25 000; (b) evolution
with time of the velocity components at different points in the cavity and of the global kinetic
energy Ec at Gr = 25 000; signals with either a T1 or a T2 period are shown; (c) corresponding
power spectra of u3 and u4; (d) evolution with time of velocities over a period: comparisons between
Gr = 25 000 and Gr = 45 000; (e, f) comparisons between phase trajectories obtained at Gr = 25 000
and Gr = 45 000 ((e) v2 = f(v1); (f) w3 = f(u3) ). The subscripts 1–5 refer to the points P1–P5 inside
the cavity (see figure 1).

signals become more complex as Gr is increased: the Fourier power spectra given
in figure 6(b, d) show a main peak at f2 = 1/T2 for Gr = 25 000, whereas several
harmonics with similar intensity are present for Gr = 45 000.

The time evolution of some local quantities, regarding the velocity components
at some chosen locations (points P1–P5) is given in figure 7. Figure 7(a–c) concerns
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Figure 8. Oscillatory flow solution in the 4 × 2 × 1 cavity for Pr = 0 and Gr = 25 000: (a–d) top
view of the streamline issued from the point (2, 0.1, 0.35) and central vorticity tube passing through
the centre point at four regularly spaced times during a period T1: (a) t = t0; (b) t = t0 + T1/4;
(c) t = t0 + T1/2; (d) t = t0 + 3T1/4. (e) Three-dimensional view of the velocity vector fields in
two vertical planes parallel to Vl and of the central vorticity tube featuring the centre of the roll at
t = t0 + 3T1/4.

the case Gr = 25 000. The phase trajectory v2 = f(v1) (figure 7a) shows clearly the
setting up of the periodic flow initiated from the perturbed initial state. From the
time evolutions given in figure 7(b), we can remark that when the points are outside
the Vl plane (P1, P4 and P5), the period of the signal is not equal to T2, but to one
twice as long T1 = 2T2 (T1 = 0.346 for Gr = 25 000). This is confirmed by the power
spectrum of u4 (figure 7c) that has the main peak at the frequency f1 which is half
the main frequency f2 obtained with the norms. On the other hand, when the points
are situated in or near the Vl plane (the original symmetry plane in the stationary
state) (P2 and P3), the velocity v still presents a main peak at f1, but the velocities u
and w present a main peak at f2 = 2f1 (see the power spectrum of u3 in figure 7c).
We will see in the next section that this result is related to symmetry properties of
the oscillatory convection. This indicates also that the actual period of the global
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(a)

(b)

Figure 9. Oscillatory flow in the 4× 2× 1 cavity for Pr = 0 and Gr = 25 000. Vorticity lines (with
an integration time of 0.36) passing through the central point of the cavity and corresponding to 18
equally spaced times during a period T1: (a) top view of the lines; (b) front view of the extremities
of the lines.

phenomenon is T1 and not T2. Figure 7(d–f) confirms by comparison between cases
at Gr = 25 000 and Gr = 45 000 the increasing complexity of the oscillatory behaviour
as Gr is increased.

5.2.2. Spatial characteristics

The spatial characterization of the oscillatory convection is performed for Gr =
25 000, one of the simplest cases treated for Pr = 0. The position of the central vorticity
tube together with a characteristic streamline is given at four regularly spaced times
during a period in figure 8(a–d) whereas the precise evolution of the central vorticity
line during the whole period T1 is given in figure 9. As shown in figure 8(e), these
vorticity tubes and lines feature the successive positions of the axis of the central roll.
In the stationary state, the axis of the roll was along the y-direction (see the vorticity
tube in figure 5c) and Ωy vorticity was thus generated. In the oscillatory state, the axis
of the roll oscillates around its steady state position. This oscillation corresponds to a
standing wave because of the symmetry point at the center of the cavity. Figure 9(b)
shows that the roll oscillates mainly horizontally, corresponding to the creation of
vertical vorticity Ωz , but also vertically corresponding to the creation of horizontal
vorticity Ωx. The two oscillations are combined in such a way that the induced Ωz and
Ωx vorticity have the same sign, and the evolution of the roll is perfectly continuous.
The pictures 8(b–d), taken at t0 + T1/4 and t0 + 3T1/4 and which correspond to
the maximum amplitude of the horizontal oscillation, indicate clearly the combined
inclinations of the roll, corresponding to negative Ωz and Ωx vorticities in the first
case and to positive vorticities in the second case. In the two other pictures (8a, c),
the rolls are at the positions of minimum horizontal deviation.

A more careful examination of the results shows that the spatial oscillation of
the roll corresponds to an elliptic precession with a fixed point at the centre of
the cavity (this precession occurs in a direction opposite to the rotation of the flow
in the roll, i.e. in the clockwise direction for figure 9b). The maximum horizontal
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and vertical deviations do not coincide exactly but are close one to another. The
axis of the roll is quite strongly inclined in the core of the cavity, but it is more
perpendicular to the lateral wall in the neighbourhood of this wall, giving there a
kind of elliptic translation motion. The outer long-scale circulation seems less affected
by the oscillatory convection: it looks like an adaptation to the oscillatory motion
in the core. The flow along the horizontal walls remains roughly parallel to the
x-direction, with only a small deviation of the flow (due to the vertical oscillation of
the roll) from the part where the roll moves closer to that wall to the part where it
moves away. Along the endwalls, the return motion to the lateral walls is no longer
symmetric with respect to the Vl plane but each of the return directions is successively
favoured during the roll oscillation.

For Gr = 45 000 the oscillatory convection still corresponds to the oscillations
mentioned above, but the evolution with time is not as regular as for Gr = 25 000. It
presents some slight stagnation periods or reverse rotation sequences (see for example
the phase trajectories of figure 7e, f). The spatial structure of the oscillatory flow
is in fact more easily understood with some specific animations realized on Sun
workstations (Henry & Buffat 1990).

5.3. Analysis of the symmetry properties

The basic stationary state U 0 obtained in the parallelepipedic cavity with rigid
boundaries presented a reflection symmetry S with respect to the Vl plane:

SU 0 = U 0 (5.1)

with by definition

S : (x, y, z, t)→ (x, 2− y, z, t), (U,V ,W )→ (U,−V ,W )

and a reflection symmetry Sr with respect to the Ht axis:

SrU 0 = U 0 (5.2)

with by definition

Sr : (x, y, z, t)→ (4− x, y, 1− z, t), (U,V ,W )→ (−U,V ,−W ).

These symmetries come from the invariances of the system restricted by the boundary
conditions, and from specific properties of parity in the rigid case (see Laure 1987).
The bifurcation to the oscillatory convection (corresponding to the oscillation of
the roll) breaks these symmetries S and Sr . It only preserves the symmetry Sc with
respect to the centre of the cavity (Sc = S · Sr). Because the oscillations of the roll
occur successively on each side of its steady position, the S and Sr symmetries are
maintained between states separated by half the period T1/2 = T2. Near the Vl plane,
the values of velocities u and w (and the temperature T ) are then identical after half
a period, whereas the velocity v changes its sign. This accounts for the presence of a
main peak at f2 in the power spectrum of u and w (and T ) near the Vl plane, whereas
the main peak in the power spectrum of v is still at f1. Outside the Vl plane, the main
frequency corresponds to f1 for all the variables. These symmetry properties explain
also why the L2 norms of the velocities (i.e. the integral of the square of the velocity
over the whole volume) have a period equal to T2 = T1/2 (figure 6a), leading to an
effective main frequency at f2 and to the suppression of the f1 peak in the power
spectrum (figure 6d).
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5.3.1. General analysis

These bifurcations with symmetry breaking can be analysed with the theory of
dynamical systems (Iooss & Joseph 1989; Iooss 1988). Although this analysis is now
well known, we recall the main results. Near the bifurcation, the dynamics of our
system is defined by an evolution equation of the form

∂U

∂t
= F(µ,U(x, t)), (5.3)

where µ is the control parameter (in our case µ = Gr − Grc and (5.3) is the Navier–
Stokes equation (2.6)). For µ 6 0 there exists a stable solution U0(x, t), whereas for
µ > 0 this solution is unstable to small disturbances and bifurcates to a new solution
U(x, t). We will now deduce some properties of the bifurcating solution U(x, t) from
the symmetry properties of the basic state U0(x, t).

Let us consider the case of a stationary basic state U0(x) (i.e. satisfying F(µ,U0) = 0)
which bifurcates to a periodic state U(x, t) through a Hopf bifurcation at µ = 0, and
assume that U0 has the symmetry S which commutes with F:

SU0 = U0 and F(µ, SU0) = SF(µ,U0). (5.4)

The linear operator L, associated with the linearization of the equation (5.3) around
U0 is defined by

L(µ) =
∂F(µ,U0)

∂U
(5.5)

and commutes with S . Let us assume now that ξ and ξ̄ are the two complex conjugate
eigenvectors associated with the two most unstable eigenvalues σ(µ) = η(µ) + iω(µ)
and σ̄ = η(µ)− iω(µ) of the linear operator L(µ):

L(µ)ξ = σ(µ)ξ with η(µ) < 0 for µ < 0 and η(µ) > 0 for µ > 0. (5.6)

As L commutes with S , Sξ is also an eigenvector of L associated with the same
eigenvalue σ, so that Sξ is carried by ξ: Sξ = αξ. As the symmetry S verifies S2 = Id
(Id is the identity operator), we obtain α2 = 1, i.e.

Sξ = ±ξ. (5.7)

Near the threshold, the bifurcating solution U(x, t) is a combination of the basic state
U0 and a fluctuation u(x, t) spanned mainly by ξ and ξ̄ (Iooss & Joseph 1989):

u(x, t) = z(t)ξ + z̄(t)ξ̄ + w(x, t) with w = O(|z|2). (5.8)

Using the time invariance of the solution, the amplitude equation for z may be written
as

dz

dt
= (aµ+ iω)z − b|z|2z. (5.9)

This is the normal form of the Hopf bifurcation, where the first term accounts for
the linearized operator L (with σ = aµ + iω), and the second term accounts for the
nonlinear saturation of the linear perturbation. This equation has a stable solution
for µ > 0:

z(t) = αµ1/2eiωt with α2 =
a

b
(5.10)

which is periodic with a period T = 2π/ω and has an amplitude proportional to the
square root of the control parameter µ. The bifurcating solution is then

U(x, t) = U0 + αµ1/2eiωtξ(x) + αµ1/2e−iωtξ̄(x). (5.11)
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Mode Eigenvalues % energy

1 0.7682 76.82
2 0.1980 96.62
3 0.0218 98.80
4 0.0090 99.70

Table 1. Normalized eigenvalues of the POD modes and their cumulative contribution to the total
energy for Gr = 25 000 and Pr = 0.

Applying the symmetry operator S on the bifurcating solution leads to

SU(x, t) = U0 + αµ1/2eiωtSξ(x) + αµ1/2e−iωtS ξ̄(x) with Sξ = ±ξ. (5.12)

• If the eigenvector ξ is invariant under S (i.e. Sξ = ξ), then the bifurcating
oscillatory solution is pointwise invariant under S:

SU(x, t) = U(x, t). (5.13)

In this first case, the Hopf bifurcation occurs without symmetry breaking. That
corresponds to the first oscillatory bifurcation observed in the two-dimensional cavity.
• If the eigenvector ξ is such that Sξ = −ξ, the S symmetry is broken but the

bifurcating solution verifies

SU(x, t) = U0 + αµ1/2eiω(t+π/ω)ξ(x) + αµ1/2e−iω(t+π/ω)ξ̄(x)

= U(x, t+ π/ω). (5.14)

Thus, a Hopf bifurcation with a symmetry breaking is characterized by an anti-
symmetric perturbation, and the bifurcating solution preserves the symmetry between
states separated by half a period.

5.3.2. Three-dimensional oscillatory bifurcation

In the three-dimensional case, the first bifurcation from the stationary state
U 0(x, y, z) to an oscillatory convection (with a period T1 = 2T2) is a Hopf bifur-
cation with symmetry breaking on S and Sr . From the above analysis, the bifurcating
solution U (x, t) has the following symmetry properties:

SU (x, y, z, t) = U (x, y, z, t+ T2), SrU (x, y, z, t) = U (x, y, z, t+ T2). (5.15)

And as Sc = S · Sr , the bifurcating solution is also pointwise invariant under Sc:

ScU (x, y, z, t) = U (x, y, z, t). (5.16)

From our data, it was not possible to have U 0(x, y, z), the steady flow at the
oscillatory threshold and, for Gr = 25 000, to deduce the perturbation as expressed
by (5.11). However, by averaging the numerical results over the period, we have
obtained the mean flow 〈U〉t(x, y, z) and deduced the fluctuating flow u(x, y, z, t) =
U (x, y, z, t) − 〈U〉t(x, y, z). This fluctuating flow has been analysed by the method of
proper orthogonal decomposition (POD), namely the method of snapshots as used
by Deane et al. (1991) and discussed by Sirovich & Park (1990). For Gr = 25 000, 181
snapshots regularly spaced during the period T1 have been used for the decomposition
of the fluctuating flow. The four largest eigenvalues corresponding to the most
energetic modes are shown in table 1. We observe a quick decrease of the contributions
of the modes, and clearly the first mode dominates, comprising more than 76% of the
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Figure 10. Oscillatory flow in the 4 × 2 × 1 cavity for Pr = 0 and Gr = 25 000: velocity field in
the principal middle planes, for the mean flow (a, Vl plane; b, Hl plane; c, Vt plane) and for the
dominant first mode (d, Hl plane; e, Vt plane).
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Figure 11. Time variation of the amplitudes of the first four modes.

‘energy’ of the motion. The spatial structure of the mean flow and of the first mode
is shown in figure 10. The mean flow compares well with the steady flow solution at
Gr = 20 000 (S and Sr symmetries, concentrated roll in the Vl plane, four vortices in
the Hl plane). As expected from § 5.3.1, the dominant first mode is anti-symmetric
with respect to S and Sr , with no flow in the Vl plane. In the horizontal plane Hl

(figure 10d), the flow for this first mode corresponds mainly to a rotation around
the centre of the cavity, which creates the vorticity Ωz responsible for the horizontal
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t t0 t0 + T1/4 t0 + T1/2 t0 + 3T1/4

1
2
〈|u|2〉 0.02315 0.01788 0.02338 0.01755

Table 2. Average kinetic energy of the fluctuation u for Gr = 25 000 and Pr = 0 at four equally
spaced times during a period T1. The average kinetic energy of the mean flow U 0 is 0.24680.

oscillation of the main roll. In the vertical plane Vt (figure 10e) we observe also a
rotation, which creates the vorticity Ωx responsible for the vertical oscillation of the
main roll. The second mode looks similar to the first, with the same symmetries and
similar rotations in the Hl and Vt planes (they together contain more than 96% of
the ‘energy’). It is only with the third and fourth modes (only 3% of the ‘energy’)
that flow structures with the same symmetries as the mean flow are found. As regards
temporal response of the modes (figure 11), the third and fourth modes oscillate with
twice the frequency of the first two modes, a phase shift of about π/2 being observed
between the first and second modes.

5.4. Energy budget

The average kinetic energy of the perturbation of the periodic flow 0.5〈U 2〉 is given
in table 2 at four different times during a period for Gr = 25 000 and Pr = 0. These
variations are around 10% of the average kinetic of the mean flow, 0.5〈〈U〉2t 〉. The
spatial localization of the kinetic energy is given in figure 12(a–d), where the kinetic
energy of the fluctuation at a given time in the period is compared with the kinetic
energy of the mean flow. The maxima of the kinetic energy are located in the middle
of the cavity within two zones. For the mean flow, these two zones are along the
two horizontal walls of the cavity on each side of the Hl plane, whereas for the
perturbation, they are near the two vertical lateral walls on each side of the Vl plane.

If we write now the equation of conservation for the fluctuating kinetic energy and
calculate the different contributions, it is found for Gr = 25 000 and Pr = 0 that the
production of fluctuating kinetic energy comes mainly from the shear of the mean
flow, with a main term corresponding to w′(∂u0/∂z)u

′. The zones of production due
to this dominant contribution are located near the lateral walls within the domain of
strong fluctuating kinetic energy presented in figure 12(c, d).

5.5. Influence of Pr

5.5.1. General results

Experimental results are available for such rigid cavities (4× 2× 1) with adiabatic
lateral walls in the case of mercury which corresponds to Pr = 0.026 (Hart &
Pratte 1990; Pratte & Hart 1990; Hung & Andereck 1990). In order to allow some
comparisons, simulations have been done for Pr 6= 0 in the adiabatic case, mainly for
Pr = 0.026 (from Gr = 30 000 to Gr = 45 000).

In cases with small but non-zero Pr (Pr = 0.015 and Pr = 0.026), beyond a certain
threshold an oscillatory behaviour globally of the same type as for Pr = 0 is obtained.
The time evolution of the norm of v is given in figure 13 for the three cases, Pr = 0
at Gr = 45 000 and Gr = 25 000, and Pr = 0.026 at Gr = 45 000. The main result is
the strong increase of the frequency when Pr is different from zero. For example, as
can be seen in table 3, for Gr = 45 000 the frequency changes from 4.1 for Pr = 0, to
14.8 for Pr = 0.015 and to 16.0 for Pr = 0.026. For situations closer to the thresholds
(Gr = 25 000 for Pr = 0 and Gr = 35 000 for Pr = 0.026) the frequency increases
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Figure 12. Oscillatory flow in the 4 × 2 × 1 cavity for Pr = 0 and Gr = 25 000. Comparison
between the kinetic energy field of the mean flow and of the perturbation at a given time in the
period: (a) three-dimensional view of the mean flow kinetic energy iso-surface corresponding to
half of the maximum value; (b) mean flow kinetic energy in the transverse vertical plane Vt; (c)
three-dimensional view of the fluctuation kinetic energy iso-surface corresponding to half of the
maximum value; (d) fluctuation kinetic energy in the transverse vertical plane Vt.

from 2.9 (Pr = 0) to 13.8 (Pr = 0.026). The situations at Pr = 0 and Pr = 0.026
are compared through time variations (figure 14a for Pr = 0.026 and figure 7b for
Pr = 0) and phase diagrams (figure 14b, c). The two cases Gr = 45 000 at Pr = 0.026
and Gr = 25 000 at Pr = 0 give the same type of evolution with a similar intensity.
Smaller fluctuations are obtained for Pr = 0.026 in situations closer to the threshold
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Figure 13. Time characteristics of the oscillatory convection in the 4 × 2 × 1 cavity. Comparison
of the time evolution of the L2 norm of v for Pr = 0 at Gr = 25 000 and Gr = 45 000, and for
Pr = 0.026 at Gr = 45 000.

Gr \Pr 0 0.015 0.026
25 000 2.9
35 000 13.8
45 000 4.1 14.8 16.0

Table 3. Frequency f1 of the time-dependent flow occurring in the 4× 2× 1 rigid cavity for small
values of Pr and different values of Gr.

as at Gr = 35 000 (figure 14b, c), indicating that the growth of the perturbation with
Gr at Pr = 0.026 seems to be slower than at Pr = 0.

The oscillation of the roll is depicted in figure 15 for Gr = 40 000 at Pr = 0.026: the
elliptic precession of the central vorticity line obtained at Pr = 0 (figure 9) appears
rather as an oscillating motion along a straight line corresponding to the large axis
of the previous ellipse, and this motion, as indicated by the stronger frequency,
occurs more quickly. Evolution with time of the temperature field can be observed in
figure 16 where the isotherms on the top and side boundaries are given at four instants
throughout the period: it can be noticed that the deformations of the temperature
field follow the oscillations of the velocity field.

For Pr = 0.026 (experimental case), the critical Grashof number (assuming a
Hopf bifurcation and using extrapolation to zero amplitude) has been found at
Grc = 33700 ± 300 with a critical frequency f1c = 13.6 obtained by extrapolation of
the period to Grc.

5.5.2. Comparisons with experiments

The available experimental results (given in the publications mentioned above)
correspond to the time series of the temperature at some particular locations and
to the corresponding power spectra. In Hung & Andereck (1990), the temperature
is measured at a single point at the top centre of the cavity (x = 2, y = 1, z = 1).
The critical Grashof number Grc for the onset of oscillations is estimated around
Grc = 38 870. Just beyond Grc, they observe a very steady oscillation with a primary
frequency f2 = 27.1, followed soon by the first subharmonic at f2/2. When increasing
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Figure 14. Time characteristics of the oscillatory convection in the 4× 2× 1 cavity for Pr = 0.0026:
(a) evolution with time of the velocities at different points in the cavity for Gr = 45 000; (b, c)
comparisons between phase trajectories obtained at Pr = 0 and at Pr = 0.026: (b) v2 = f(v1),
(c) w3 = f(u3). (�, Pr = 0 for Gr = 25 000; 4, Pr = 0.026 for Gr = 35 000; ©, Pr = 0.026 for
Gr = 45 000).

the Grashof number up to 132 600, they obtain the successive appearance of the
subharmonics f2/3, f2/6, f2/9 and f2/18. In Hart & Pratte (1990), the temperature
is measured in the Vt plane (x = 2) near the top at different y and different depths.
The value of Grc is given there around Grc = 42 300. The flow starts to oscillate at
f1 = 14.3, but it is mentioned that the centre probe (at y = 1) presents a spectrum that
rapidly becomes dominated by its second harmonic 2f1, while the off-centre probes
at y = 0.25 and y = 0.75 keep the lower frequency f1. Further evolutions correspond
to period doubling (f1/2 and f1/4) and to other more complicated subharmonics. In
Pratte & Hart (1990), the authors indicate that they have realized some measurements
outside the Vt plane and they give for the same case a smaller critical Grashof number,
Grc = 39 600. They do not give the new value for the fundamental frequency f1, but
mention a further evolution corresponding to the subharmonic 5f1/8.

These experimental results compare well with our numerical results, specially on
the following points:
• The critical Grashof number given by the simulation, Grc = 33 700, is a little

smaller than the values given by the experiments. This discrepancy may be attributed
to numerical errors because our mesh is a little too coarse in some parts of the
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(a)

(b)

Figure 15. Oscillatory flow in the 4 × 2 × 1 cavity for Pr = 0.026 and Gr = 40 000. Vorticity lines
(with an integration time of 0.38) passing through the central point of the cavity and corresponding
to 17 regularly spaced times during a period T1: (a) top view of the lines; (b) front view of the
extremities of the lines.

(a)

(b)

(c)

(d)

Figure 16. Temperature field in the 4× 2× 1 cavity for Pr = 0.026 and Gr = 40 000. Isotherms on
the walls given at four equally spaced times during a period T1: (a) t = t0; (b) t = t0 + T1/4; (c)
t = t0 + T1/2; (d) t = t0 + 3T1/4.

cell, but also to experimental uncertainties because finite-amplitude oscillations are
required to detect the threshold during the experiments. Concerning experimental
uncertainties, Hung & Andereck (1990) specify that the temperature difference ∆T
at the critical threshold corresponds to 2.24 ◦C, with a temperature regulation of
about ±0.02 ◦C which is much smaller than the oscillation amplitude observed at the
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Figure 17. Time series of the temperature and corresponding power spectra for Pr = 0.026 and
Gr = 40 000: (a) time series of the temperature at point P2 (in the Vl plane); (b) corresponding
power spectrum with a main frequency f2 = 2f1; (c) time series of the temperature at point P4

(outside the Vl plane); (d) corresponding power spectrum with a main frequency f1.

onset, and that this temperature difference is increased by steps of 0.12 ◦C. Thus the
measurements by steps of 0.12 ◦C compared to 2.24 ◦C give an uncertainty on the
critical Gr of about 2000. Moreover, according to the simulations, the amplitude of
the temperature oscillations at the top centre of the cavity where Hung & Andereck
(1990) made their measurements (for example at the point P2) is about 0.01, 0.03
and 0.06 (non-dimensional values) for Gr = 35 000, 38 000 and 40 000 respectively,
which corresponds to 0.005, 0.017 and 0.028 ◦C in the experimental situation. When
compared to the regulation precision of 0.02 ◦C, this leads to a possible overestimation
of the critical threshold during the experiment, of up to 5000.
• The values of the critical frequencies are in good agreement. The global oscillation

of the roll observed by the simulations corresponds to a main frequency f1 = 13.6,
but because of the symmetry properties of the evolution (S symmetry for two states
separated by T1/2) the frequency f2 = 2f1 = 27.2 is also observed near the Vl
plane. The values of these frequencies agree well with the experimental observations
which confirm also our interpretation of the motion: Hung & Andereck (1990) made
measurements in the Vl plane (top centre) and obtained the two harmonics f2 = 27.1
and f2/2; Hart & Pratte (1990) generally obtained the harmonic f1 = 14.3, but the
centre probe also gave the harmonic 2f1 = f2 = 28.6.
• Some comparisons can be made on the evolution of the temperature field. We

give in figure 17 for the case Gr = 45 000 at Pr = 0.026 the evolution with time of the
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Figure 18. Temperature field in the 4× 2× 1 cavity for Pr = 0.026 and Gr = 40 000. Isotherms in
the Vt plane given at two times t0 and t0 + T1/2. The letters H and C indicate respectively the hot
and cold zones.

temperature at the two points P2 and P4, and the corresponding power spectra. The
evolution at P2 (which is located in the Vl plane just below the top centre) presents an
apparent period of T2 and corresponds to a main peak at f2 with a small contribution
at f1: it can be compared with a good similarity with figures 1b and 1b′ of Hung
& Andereck (1990), and qualitatively with figure 3a of Hart & Pratte (1990). The
evolution at P4 (which is located outside the Vl plane) presents an apparent period of
T1 and corresponds to a main peak at f1 with smaller subharmonics contributions:
it can be qualitatively compared with figure 3b of Hart & Pratte (1990). Finally, the
isotherms obtained on the top boundary and at times corresponding to the maximum
deformation (t = t0 + T/4 and t = t0 + 3T/4) (figure 16b, d) compare qualitatively
well with those given in figure 5 by Pratte & Hart (1990).
• Concerning the characterization of the next bifurcations, there is no perfect

agreement between the experimental studies: Hung & Andereck (1990) found a
subharmonic at f2/3 = 0.66f1, Hart & Pratte (1990) a period doubling at f1/2 = 0.5f1

and Pratte & Hart (1990) a subharmonic at 5f1/8 = 0.63f1. In our case, an increase
of Gr leads to a period doubling at f1/2 for Gr = 150 000 (Buffat & Henry 1991).
The frequency f1/2 which indicates a period corresponding to two oscillations of the
roll can be expected as it would only mean that two successive oscillations of the roll
are now a little different.

5.5.3. Discussion

We have seen that the increase of Pr leads to an increase of the critical Gr for
oscillatory convection and to a strong increase of the frequency. A value of Pr different
from zero leads to longitudinal deformations of the isotherms (observable in the Vl
plane) which decrease the longitudinal temperature gradient in the core of the cavity
responsible for the intensity of the motion. As the transition to the instability has a
dynamical origin, an increase of Gr will then be necessary to reach a critical velocity
or a critical vorticity Ωy .

The oscillatory convection, corresponding to spatial oscillations of the roll, leads
for Pr 6= 0 to transversal deformations of the isotherms (well perceptible in the Vt
plane, see figure 18) which tend to stabilize the oscillation of the roll. For Pr = 0 the
stabilization of the roll oscillation depends only on dynamical effects (pressure and
viscosity), while for Pr 6= 0 it is strongly affected by large thermal stabilization effects,
which could explain the strong decrease of the period when Pr is different from zero.

For these cases with Pr 6= 0, the principal characteristics of the kinetic energy
transfer from the mean flow are still found to be like those for Pr = 0, with a
dominant contribution coming from w′(∂u0/∂z)u

′. The extra term corresponding to
the contribution of the fluctuating temperature in buoyancy is an order of magnitude
smaller. Moreover all the terms of the equation of conservation of the fluctuating
thermal energy are globally smaller.
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6. General discussion and comparisons
6.1. Three-dimensional oscillatory instability

The oscillatory instability found in the three-dimensional case is of pure dynamical
origin. It is obtained even in the limit Pr = 0 corresponding to a temperature
field completely frozen in its diffusive equilibrium and for which no temperature
fluctuations are allowed. A small value of Pr modifies the characteristics of the
instability but does not change its fundamental nature.

This oscillatory instability corresponds to a global oscillation of the roll with a fixed
point at the centre of the cavity, appearing as a standing wave. It looks very different
from the oscillatory longitudinal rolls instability which is predicted by the stability
analysis of the Hadley circulation for small Prandtl numbers (Laure 1987; Wang &
Korpela 1989) and which has a thermal origin as the threshold increases strongly
for Pr → 0. However, quite similar oscillations of rolls are predicted by theoretical
analysis in different situations with small-Pr fluids (Clever & Busse 1974; Nagata &
Busse 1983; Meneguzzi et al. 1987).

These situations correspond to extended fluid layers heated from below where a
steady convection in the form of two-dimensional counter-rotating rolls is obtained.
For small-Pr fluids, these rolls can be destabilized through an oscillatory instability
which corresponds to a global oscillation of the rolls propagating in time along
the roll axis (travelling wave). The frequencies of the oscillations (13 < f < 19 for
Pr = 0.025 (Clever & Busse 1974), and f ≈ 3 for Pr = 0 (Nagata & Busse 1983))
have the same order of magnitude as in our case. Moreover, the origin of these
oscillatory instabilities is also attributed in these works to the momentum advection
terms, through the creation of vertical vorticity Ωz (Clever & Busse 1974; Nagata
& Busse 1983). The rolls oscillate both horizontally and vertically (Meneguzzi et al.
1987). As in our case, a negative y-vorticity roll moves down when moving in the
x-direction. This can in fact be related to the deformation term Ω ·∇u in the vorticity
equation (Batchelor 1967): for a steady roll corresponding mainly to negative Ωy , a
velocity field such that (∂u/∂y) < 0 (corresponding to positive Ωz) will lead to the
creation of positive Ωx.

6.2. Comparisons between two- and three-dimensional results

The two-dimensional results correspond to the 4 × 1 rigid cavity and the three-
dimensional results to the 4 × 2 × 1 rigid cavity. In both situations we find a con-
centration of the main roll in the cell corresponding in a smooth way to the onset
of the multi-roll structure: this transition occurs quite quickly in the two-dimensional
case and leads to the subsequent creation of two end vortices; it is delayed in the
three-dimensional case and no such end vortices appear.

The transition to oscillatory convection corresponds in these two- and three-
dimensional cases to values of Gr (and frequency) not very different (for more
confined three-dimensional cases as the 4 × 1 × 1 cavity, the threshold is strongly
increased at least up to 135 000 as obtained experimentally by Pratte & Hart (1990)).
These transitions both have a dynamical origin, but they occur in a different way
in the two situations: in the two-dimensional case the oscillations correspond to
successive expansions and recessions of the three rolls in the cavity; in the three-
dimensional case the oscillations have a three-dimensional character and correspond
to the bending of the roll present in the cell in the form of a standing wave. The
variations of the flow in the Vl plane are very weak and cannot compare with the
two-dimensional results.
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Finally, concerning the frequency, the comparisons are difficult because of the
different nature of the oscillations: the main result is that the variation of the
frequency with the Prandtl number is stronger in the three-dimensional case than in
the two-dimensional case.

7. Conclusion
The convective flows, which arise in shallow cavities filled with low-Prandtl-number

fluids when subjected to a horizontal temperature gradient, have been studied nu-
merically with a finite element method. In order to allow a detailed analysis of the
phenomena, attention has been focused on a rigid cavity with dimensions 4 × 2 × 1
for which experimental data were available. The study has been performed in both
two-dimensional and three-dimensional cases.

The two-dimensional results at Pr = 0 give a first steady transition to a multi-roll
structure followed by a second transition to a mono-periodic flow characterized by
pulsations of the rolls. The three-dimensional results at Pr = 0 show a similar but
slower steady evolution corresponding to the concentration of the initial Hadley
circulation into a large roll in the core of the cavity. The further transition to time-
dependent flows occurs as a three-dimensional roll oscillation corresponding to the
creation of vertical and longitudinal vorticity. This transition is a Hopf bifurcation
that breaks some symmetries of the steady flow, but preserves them between states
separated by half the period. This behaviour is associated to the anti-symmetric
character of the perturbations, and is shown to be a general result for such dynamical
systems. This transition is preferred to the transition of two-dimensional type without
breaking of symmetry. In these oscillatory flows the production of fluctuating kinetic
energy comes principally from shear of the mean flow.

Calculations performed in the case of mercury (Pr = 0.026) give similar results
which compare well with the experimental data: more precisely, the experimental
time series and power spectra of the temperature show typical properties related to
the symmetries observed in the calculations. This validates the computational results
and the analysis of the nature of the global flow and of the symmetry properties.
Regarding the influence of a non-zero Pr value, the main effects are the increase of
the oscillatory threshold and the strong increase of the frequency.

Finally, these results have been discussed with respect to previous works. The roll
oscillations obtained in our study compare with those obtained numerically or by
stability analyses in horizontal or inclined layers of low-Pr fluids heated from below
where an array of parallel rolls has developed.

This study has focused on a rigid cavity with dimensions 4 × 2 × 1. It would be
interesting to investigate other aspect ratios in order to determine the domain of
existence of the oscillatory instability which has been found, and perhaps other types
of instabilities. However, such three-dimensional simulations remain computationaly
expensive and may require the development of new algorithms.
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